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This analysis models a craze region in glassy polymers as an elastic transversely isotropic homogeneous 
inclusion of thin elliptical shape with different elastic properties from the bulk polymer. The plane 
elasticity problem for an applied uniform stress field is solved and the results dimensionalized with 
respect to the craze tip radius. Stress and strain enhancements of several times far field values are found 
to occur at the craze tip and are independent of craze tip radius. These results are consistent with 
experimentally observed characteristics of craze growth and should be important in assessing the 
relative merits of different criteria that have been proposed for craze growth in glassy polymers. 
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INTRODUCTION 

Crazes play an important role in the mechanical integrity 
of glassy polymers since they serve as precursors to the 
actual fracture of the polymer. As such, the phenomenon 
of crazing has received considerable theoretical and 
experimental attention over the years and summaries of 
the earlier work are contained in the survey articles of 
Rabinowitz and Beardmore 1 and Kambour 2. Broadly 
speaking, theoretical investigations of the mechanical 
properties of glassy polymers, including formation and 
growth of crazes, have proceeded along two rather 
distinct directions. The first, generally referred to as a 
kinetic theory, involves a micromolecular and thermody- 
namic approach in which the free energy of an element of 
the polymer is represented analytically and expressions 
for forces and pressures follow from differentiation of the 
free energy with respect to position or volume. Pro- 
babilistic representation of the entropy leads to Arrhenius 
type relations, refinements of this analysis being in more 
detailed statistical representations of the activation pro- 
cesses associated with the chain molecules to account for 
such effects as side chains, cross-linking, and chain 
scission. An excellent review of the kinetic theory is 
available in the book by Kausch 3. One drawback to these 
kinetic theory analyses is that they are primarily scalar or 
one-dimensional, thus suppressing the tensorial nature of 
the stress and displacement fields. A second direction has 
been along the lines of a macroscopic or continuum 
mechanics approach in which the polymer is modelled as 
an elastic, viscoelastic, or plastic material. Reviews of this 
work are available in the survey papers of Knauss 4 and 
Kramer 5, and it is this second approach which is exploited 
in this work. An attempt to correlate and combine results 
from these two distinct approaches into a comprehensive 
theory of polymer fracture has been made by Andrews 
and Reed 6. 

* This work performed at Sandia National Laboratories supported by 
the US Department of Energy under contract number 
DE-AC04-76DP00789. 

Because of the importance of crazes in the eventual 
fracture of glassy polymers, a number of criteria for 
initiation and growth of crazes have been advanced. 
Within the framework of continuum mechanics, these 
have included critical stress criteria 7'8, critical strain 
criteria 9,10, energy release rate-fracture mechanics crite- 
ria 11,12 and a dilatational stress criteria 13. These criteria 
have been applied to the uniform loading conditions and 
not to the stress or strain conditions actually existing in a 
neighbourhood of the craze. This deficiency in the de- 
velopment of a criterion for craze initiation and growth 
has been recognized and several analyses of the stress field 
around a craze have been presented 5. Following the 
original work of Knight 14, all of these analyses have 
modelled the uncrazed polymer as a linear elastic body in 
plane stress or strain, and the craze region is modelled as a 
crack with either prescribed displacements representing 
the craze interface, or as an elastic foundation acting on 
the crack surface. Suppression of the inevitable stress 
singularity associated with the classical crack analysis by 
invoking a Dugdale-Barenblatt type annihilation results 
in stress and strain fields which provide very little 
enhancement at the craze tip, and craze tip shapes in the 
form of cusps which are considerably different from the 
blunted shapes observed experimentally. 

To overcome the limitations associated with modelling 
the craze as a crack with elastic foundation properties, this 
analysis considers the craze region as an elastic trans- 
versely isotropic homogeneous inclusion of elliptical 
shape embedded in a second unbounded elastic isotropic 
material representing the bulk or uncrazed polymer. The 
bulk polymer is assumed to be in a condition of plane 
deformation and subjected to uniform loading conditions 
in the far field. Under these conditions, it is well 
known15,16 that the transversely isotropic elliptical in- 
clusion is in a state of uniform stress. This fact, together 
with a straightforward application of the complex fun- 
ction theory of Muskhelishvili iv to the elastic isotropic 
region exterior to the elliptical inclusion, provides a 
closed-form solution to this plane elasticity problem. This 
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solution is then represented as a power series in powers of 
the ratio of minor to major axis of the elliptical inclusion. 
For typical thin crazes, this ratio is very small and only the 
leading terms in this series representation are retained. 
With the help of a polar coordinate system with origin at a 
geometrical focus of the ellipse, the stress field in the 
neighbourhood of the craze tip is presented and discussed 
in detail. These results indicate that a bounded, very 
localized stress and strain enhancement of several times 
far field values is possible in the bulk polymer at the tip of 
the craze, and this enhancement is independent of the 
craze tip radius or craze length. Under these conditions, 
the shape of the craze tip remains blunted. The effect of 
this stress and strain enhancement at the craze tip on craze 
growth is yet to be determined but should be of interest in 
assessing the relative merits of different criteria that have 
been or may be proposed for craze growth in glassy 
polymers. 

ELASTIC ANALYSIS 

In this section we consider the plane elasticity problem of 
an elliptical shaped anisotropic homogeneous inclusion 
contained in an isotropic homogeneous matrix of infinite 
extent as shown in Figure 1. The isotropic elastic material 
exterior to the ellipse will be denoted as region 1, while the 
interior anisotropic elastic material will be denoted as 
region 2. Perfect bonding between these materials is 
assumed to occur at the elliptical interface, and the 
exterior region 1 is assumed subjected to a uniform stress 
state as infinity. Elliptical inclusion problems of this type 
have been the subject of numerous investigations over the 
years and of particular significance is the fact that under 
this condition of uniform loading in the far field, the 
inclusion is in a uniform stress state 15' 16. This uniform 
stress condition is exploited in the analysis. 

Analysis o f  region 1 
The stress and displacement fields in the isotropic 

elastic region 1 can be most readily obtained using the 
complex function theory of Muskhelishvili 17. Accord- 
ingly, we represent the x-y  plane as a complex z-plane, 
z = x + iy, and map this conformally into the exterior of 
the unit circle in a (-plane with the map 

z=o~(~)=R(~+l/O, R>0, I~1>1. (1) 

The elliptical interior boundary of region 1 in the z-plane 
maps into a circle of radius a > 1 in the ~-plane. The 
elliptical boundary has semi-minor axis ml and semi- 
major axis m2 which are dependent on the parameter a 
such that 

ml = R ( a -  I/a), m2 = R(a + l /a) .  (2) 

The appropriate complex potential functions $(0 and 
~'(0 which provide a uniform stress field in the inclusion 
together with the prescribed stresses at infinity are 

1 
~(/~) = F ( (  + 1 / 0 -  a_  1 -~ 

1 
@(0 = r'(~ + 1/0 + (~2--~1) b-  1 ~ + b_ 31/0. 

In equation (3), F and F' are constants which relate to the 
uniform stress field at infinity and are given by 

R F=~-(a~o+ayo) 

r " ~  R ~- (tTyo - a~o + 2iTo), (4) 

where axo, ayo, ~o designate the limit of axe, ayy, a~y 
respectively as z--+~, and a_ 1, b_ 1, b_ 3 are constants to 
be determined from continuity of displacements and 
normal tractions at the elliptical interface. The stress and 
displacement fields in region 1 are represented in terms of 

Y 
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~ 2/ ;?- - - - , , .  

~ m 2 ~ 
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/, 

x 

z=to(~) 
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Figure 1 Geometry of plane elasticity elliptical inclusion problem 
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these potential functions, as field in region 2 in the form 

2G1 (ul + iv1) = q ldP(~)- og(~)di)(~) - ~b(~) 

(1) ( 1 ) _  trx,` + or, - 2[0(0 + (I)(0] 

[~'(¢) (I) .... +w(0J, a(y~ ) -  a(~ + 2itr(x~) = 2 l ~  (~) (5) 

where ul, v x are components of the displacement vector in 
the x and y directions respectively, G1 is the shear 
modulus of the isotropic material of region 1, 
(I)(() = ~b'(()/co'((), q~(() = q/(()/~o'((), and 

/ 3-4va for plane strain 

rh = ~ ( 3 - v l l  for plane stress, 
[ ~]  -l-V1,] 

with va being Poisson's ratio for the material of region 1. 

2#(U2 + iv2) = (4Cx + iC4)(~ + 1/0 

+(4Cz + iC3)(~-+ 1/~-) (8) 

where Cx, C2, C3 and C 4 are real constants to be 
determined from the boundary conditions of region 1, C4 
representing a rigid body rotation of the elliptical in- 
clusion. The usual complex stress combinations are 

tr(2)4-tr(2)=2[!~+8+2b) " L I~R (8-a)#R C2] 

.(2) _ ¢r(2) 4- ~)irr (2) y, ~ x x  . . . .  xy  

= 2 F ( 8 - a )  C t L  #R (a+~-2b)  c 2 + i l  . (9) 

Analysis of region 2 
The stress field in the anisotropic elliptical shaped 

inclusion of region 2 is known to be uniform is' 16 so the 
stress and displacement fields can be immediately repre- 
sented in terms of four constants, one of which represents 
a rigid body rotation of the inclusion. The general 
constitutive law for a transversely isotropic material 
requires five independent elastic constants, and for the y- 
axis being the axis of elastic symmetry, the stress-strain 
laws as provided by Eubanks and Sternberg is take the 
form 

trx,` = aex,, + bert + (ct - 2/t)e~= 

tr,  = bexx + 8err + be,, 

tr,, = ( a -  2#)ex,` + beyy + ~e= 

tr,`r = 2ge,`y, try, = 2/~ey,, tr,`, = 2fie,`,, (6) 

where exx ..... exy . . . .  are the usual cartesian components of 
the strain tensor, and a, 8, b,/a,/7 are the five independent 
elastic constants of which /~ and # have an obvious 
physical meaning. Properties of these elastic constants are 
discussed in 1 a and also later in this paper. For a plane 
strain condition in the x-y  plane, ez, =e~, = %, = 0  and 
equation (6) become 

trxx = cte,` x + bey r 

Evaluation of constants 
The seven constants a_ 1, b_ 1, b_ a, C1, C2, C3 and C4 

are determined from the condition of continuity of 
displacements and normal stress at the interface between 
regions 1 and 2. In terms of the complex variable (, these 
continuity conditions take the form 

u~ +iv1 : U2 -t'- iV 2 ,  o n  (=ae  ~b 

t r ( 1 )  ,_(1) _(2) • (2) (10) 
o o  - " o ~  = % 0  wo, on ( = ae ~, 

where troo and %0 are the normal and tangential com- 
ponents of boundary stresses at the interface between 
regions 1 and 2. The conditions (10) provide a consistent 
set of equations for determining the seven constants, and 
evaluation provides 

(a~Ll) {[4F + a2 (F, + f ' ,)][( l + G~_ ) (~&- b2)l 
a _ , =  4G~ J 

F(t h + 1) [ 
2G1 L(8-  a)a2+(a+8+2b) 

(a 4 - 1) (r '  - r")a2(1 - I#G1) 

j) 

tryy =. be,,,, + &eyy 

6,`y= 212e~,r (7) 

with a,,  depending linearly on a,`= and a , .  A similar 
reduction occurs for conditions of generalized plane stress 
where a,,=a,`,=ay,=O, but these results will not be 
explicitly presented here. 

Uniformity of the stress field of equation (7) in region 2 
implies that the strains are constant and the associated 
displacements u2. v2 are linear functions of position. Thus 
in the complex ~-plane we can represent the displacement 

¢,..4- 1~1- 
+ [(F '+ [ " ) -4a2F]  ~ [ ( ~ - a ) a  2 + (a -F~ + 2b ) 

GI J 

+ F(t/12G l + l ~ ) [ ( 8 - a ) ( a 4 - 1 ) + 8 b a :  + ( r / , -  3 ) ~ a 2 ] }  

(a* -- 1) ,~, + ~ (1 - [")(1 - It/G,)(a 4 + 1) 
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C1 

C 2 

(8+b) ,  2 
+ 2a2I" I 2 -  r/1 - -~-- t  ta + 1)+r/1 

C3 - #(~/1 + 1) ( F , _  ~ , ) a  4 
2iG1~1 

C4 = P(ql + 1) ( F ' - r " ) ( 1 - # / G 0 a  2 
2iGx~l 

(a 4 + 1) 
b _  1 = - b _  3 a 2 a - 1  

[ 16Gt-~= [2F+a2(F'+f")] 2 (8-b)(a2+l)  
2G1 

+ ~ ( a 2 - -  1)] 

+2a2FI2a2 +qt % ( a 2  + l) 

(a 1) 

1 ~  ~L2r#('t, + 1)f_ +a2 (F' + r")][2a 2 + ~ ( a 2  + 1) 

+ ~ ( a 2 - 1 ) ]  

(~+b) ] }  
( a  - 1) 

(II) 

inclusion in which the ratio of minor to major axis is very 
small. Accordingly, we define the parameter e as the ratio 
of minor to major axis of the elliptical inclusion, equation 
(2) giving 

m 1 (a 2 -  1) 
e = - - -  << 1 (13) 

m 2 (a 2 + 1) ' 

and relate all the geometrical properties of the inclusion to 
the parameter e. 

The complex stress combinations in the bulk polymer 
of region 1 are obtained from equations (3) and (5) and 
may be put in the form 

xx - v .  - (a  4 - 1 ~ ' ( (  2 - 1) ~- (a  - ~ - S  I ) ' ( ~  - 1) 

(1) (1) • (1) ~ryy - -  Crxx + 2taxy 

{ a_ x ~2(( _ ~)(~ _ 1Xa 4 _ 1) 
= F ' + 2  (a4_ 1). ~(~2_ 1)3 

(a2+ 1 ) [ . ( a 2 - 1 )  3 - 1 )  3 ] a-1 z ( -~ -  ]-~ +3 (a2 
(a'- 1)" a (;2-1)2j 

b-3 a-1 (a2-1)2] (a4-1) '~  
+ (a-a-S_l) ~- (a4_l~.  a2 j ( ( 2 _ l ) j .  (14) 

To investigate the nature of this stress field in a neigh- 
bourhood of the craze tip, we now define a polar 
coordinate system (r,O) with origin at the right focus 
z = 2R as shown in Figure 2. Thus 

where z = 2R + re i° = R(( + 1/0 

/ /  4 

(ql + 1) 
4Gx 

[~t(a 2 - 1) 2 +8(a 2 + 1) 2] 

I b . (ct&-b2)], 4 
+ 1--(t/1--1)2~-1-t-r/1 .~12 (12) 

This completes the analysis of the plane elasticity 
problem, the stress and displacement fields in both regions 
being obtainable from equations (5), (8) and (9). Con- 
sideration is now directed to a limiting form of the 
solution as the ellipse becomes very thin. 

STRESS FIELD AT A CRAZE TIP 

In this section we utilize the results obtained from the 
elastic analysis together with the geometric properties of 
typical crazes to obtain relatively simple expressions for 
the stress and displacement fields both in the craze itself 
and in the bulk polymer in a neighbourhood of the craze 
tip. Physical observations of crazes show them to be very 
long and thin, a characteristic which has led to their being 
modelled as cracks rather than elastic inclusions in 
previous theoretical treatments. In the present analysis, 
we interpret this condition as providing an elliptical 

Y 

2R 
Cc 

Figure 2 Geometry of craze tip 

p(O) 
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and the complex stress combinations of equation (14) 
become 

which may be inverted to provide 

The minimum distance from the focus to the craze 
boundary, rO as shown in Figure 2, is 

r,/R= (a =~~(l&~+ . ..). 
a 

(16) 

while the radius of curvature rC at the tip of the craze is 

r ,R = (a2 - lJ2 =2&2(1+3&2+ .*.). (17) 

+(o,,M,+~,,M,-ir,M,,)~~~-i(3~/2)[2(~) +isinB] 

e a(a’+ 1) 

(23) 

o(l) + CT;;‘= (CT.& + a,& - 2ToMxy xx 
J 

: sin 912 

+2(0.&M, + a&My) 
J 

SOS e/2 
r 

and 

(22) 

The equation of the elliptical craze interface occurring at 
r=p(O) is 

P(O) (a + 1)2 

r= [(a2+1)+2acos8] 

From equations (15) and (16) we arrive at the important 
result 

~=~~~-i~/2[1+E(1-J~~~/2)+...], (19) 

and since r>p>r, in region 1, this quantity remains 
bounded for all r, 8 in region 1. Expanding the coefficients 
a- 1 and b_ 3 of equation (11) in powers of E and retaining 
only the leading term provides 

& = ~(~,oM,+~yoMy-i~oM,) 

$b+ = r h0N, + a,0N, + i70Nxy), 

where 

p--2(c(+b) 1 

(ccc?.- b2) 
+16G:h-3) 1 

(CrCr- b2) 
p(?l + 1) 4G, 1 

@OS- b2) 

4G1 
(VI - 3) 1 

N,, = 2M,, = ,(iG; 1)(1 -P/G,), (21) 
1 

(20) 

+(a,,N,+o,,N,+iz,N,,) 

In the results (22) and (23), terms of order E have been 
suppressed. The associated strain fields may be readily 
obtained from equations (22) and (23) using 

which are important relations for considering certain 
strain induced craze growth criteria’. lo. We note that the 
craze tip stress fields of equations (22) and (23) remain 
bounded for all ro, and in fact the stress at the craze 
interface is independent of r. as can be readily shown by 
letting r-p, a boundary point, and using equation (18). 
The complex stress combinations at the boundary be- 
come 

[c$ + ~g$, = (uXo + bye) - ?OMxy sin 8 

+ (axeM, + a,,M,)( 1 + cos 0) 

[c$i’- a$+21$.~$,= (aye - uxo +2i7,)-z,M,,sin 8emie 

+ (uxoMx + u,,M,)( 1 + cos Qe- iB 

+%,oN,+~YoNY)~ +e-‘9 (25) 

The amplitude of the complex stress combination (25,) 
is equal to 27, where 7 is the maximum shear stress at a 
boundary point. A direct evaluation reveals that this shear 
stress and also the normal stress combination (25,) exhibit 
their maximum values at the same point on the boundary 
for any combination of applied loads if the relations 

Mxy Wy + NJ = ‘WY + M,) 

M,,(4 + N, - N,) = 4(M, - M,) 

hold. These two relations are satisfied if 

a=& 2,u=o7-b. (26) 

That is, if the material constants of the craze satisfy the 
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additional conditions of equation (26), then the point of 
maximum shear stress on the craze boundary in region 1 
occurs at the same point as the point of maximum 
hydrostatic stress on the boundary. This restriction on the 
elastic constants of the craze will be discussed later but we 
mention here that the conditions of equation (26) are 
satisfied if the craze is isotropic rather than transversely 
isotropic. More important, the effect of this condition 
when the maximum shear stress and the maximum 
hydrostatic stress occur at the same point on the boun- 
dary is that all the other variables which have been 
postulated to cause craze growth also maximize at this 
same point. Thus the maximum principal stress, ma- 
ximum principal strain, maximum shear stress, maximum 
shear strain, along with the usual linear combinations of 
these quantities to represent, for example, Mohr- 
Coulomb yielding, all occur at the same point in the bulk 
polymer at the craze boundary. If the craze does actually 
behave mechanically so that this occurs, the effect would 
appear to make all of the postulated craze growth criteria 
essentially identical and mask the actual effect responsible 
for craze growth. This may in part account for the 
numerous craze growth theories advanced over the years 
and for the lack of general acceptance of any of these 
theories. 

Within the crazed region the stresses are uniform, and 
while the craze itself is not a continuous elastic material, 
these effective stresses may be of interest in investigating 
the eventual fracture of the craze. Suppressing terms of 
order E in equation (9), this uniform stress field becomes 

#)=g YY a(2) = 7 YO, xy 0. 

The rigid body angular rotation Q of the craze, positive 12 
being counter-clockwise, is given by 

and suppressing terms of order a, this becomes 

!2= - $1 -p/G,) (28) 

The displacement field at the craze tip can be repre- 
sented as the sum of the displacement of the focus plus a 
relative displacement of the craze with respect to the focus. 
Thus at the right hand craze tip we again take z = 2R + reie 
in equation (8) to get 

u2 +iu, = (U, +iV,)+ (u2 +i~~)~~]. (29) 

where (U, + iv,) is the displacement of the right focus 
point given by 

U2+iV2=~[(471+l)a.o+(~l-3)~,o+4ir,] (30) 
1 

where terms of order E have been suppressed. The relative 
displacement is 

(~2 + iu2h. = & i[h + MO + (~1 - 3byol ms 0 
1 11 

+r0:(2- &)sin0] 

+i 2~cr~osinB+rocos0 
i a 

for 

-I~l(s,+l)~.o+(n1-3)o,,lsinB)j (31) 

r<p(8)=ro[cos28/2]-’ =E2R[cos28/2]-1, 

and we note that this relative displacement is of order s2 
compared with the displacement of the focus. The radius 
of curvature at the tip of the craze remains effectively 
undeformed and the craze tip remains blunted. 

ELASTIC CONSTANTS 

Because of the importance of the elastic constants in 
delining the magnitude of the stress field at the tip of a 
craze as determined from this analysis, we now provide a 
discussion of these constants. The material of the exterior 
region, region 1, is the uncrazed bulk polymer and is 
assumed to be a linear isotropic elastic solid. Thus the 
mechanical properties of region 1 are completely defined 
in terms of two elastic constants taken here to be. the shear 
modulus G, and Poisson’s ratio vi. The physical in- 
terpretation of these two constants, or equivalently the 
material Young’s modulus E,, bulk modulus k,, or the 
Lame constant I, is well understood and experimentally 
measured values of these constants are available in the 
literature for most polymers. The obvious temperature 
dependence of these constants, though not explicitly 
acknowledged, is assumed. 

The material in the elliptical shaped interior region, 
region 2, models the crazed polymer and this is repre- 
sented as a transversely isotropic homogeneous elastic 
solid with axis of elastic symmetry normal to the plane of 
the craze. Physical observations of craze regions indicate 
them to be rather complex structures including in- 
termittent void regions with load bearing ligaments 
running primarily normal to the craze plane. As such, the 
craze region is clearly not a continuous elastic material, 
and modelling the craze as such requires an interpretation 
of the elastic constants in terms of the effective mechanical 
properties. Also, the density of voids in the craze region 
appears to be nonuniform, decreasing near the craze tip, 
but neither this nor any other possible nonhomogeneous 
mechanical effects within the craze are considered. Since 
there appears to be no preferred orientation of the craze 
with respect to the plane of the craze in polymers which 
are otherwise isotropic, the assumption of transverse 
isotropy would appear to be quite realistic. It is also likely 
that the mechanical properties of the craze and hence the 
elastic constants associated with this model of the craze 
are also temperature dependent but this is not explicitly 
represented. 
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Transversely isotropic elastic materials are characte- 
rized by five independent elastic constants, one set of 
which have already been defined in the stress-strain 
relations of equation (6). A more useful physical in- 
terpretation of these constants can be obtained by 
inverting equation (6) and writing them in the form 

1 [tr=~ - vtr=, - f t r . ]  exx = 

1 
ez, = ~ [azz -- vtrxx -- fa , r  ] 

O'xy O'y z Gxz 
e=y- 2p ' erz= qT., e==- 

2fi 
(32) 

From equation (32) we observe that E is the effective 
Young's modulus of the craze taken in any direction lying 
in the plane of the craze, /i is the effective Young's 
modulus of the craze in a direction normal to the plane of 
the craze, while v and q represent effective Poisson's ratios 
coupling strain in the plane of the craze with stresses 
applied normal to the direction of strain in the craze plane 
and normal to the craze plane respectively. The constants 
p and/~ represent the effective shear moduli for shearing 
stresses applied out of the craze plane and within the craze 
plane respectively. The relations connecting the elastic 
constants of equation (32) with those of equation (6) are 

E = 4/.i(g8- b 2 - aft) /~_ (g~-  b 2 - ~ )  
(lxS- b 2 ) ' ( a - h )  

( g 8  - -  b 2 - 28fi) 2bki 
- (33) v = ( g S _  b2 ) , ( ~ 8 _  b2 ) 

with inverse 

direct measurement and hence numerical values for these 
constants must be inferred from observations and from 
indirect measurements made on the composite system of 
bulk polymer and craze. For  example, the nature of the 
extensive void region in the craze and the load carrying 
ligaments aligned transverse to the plane of the craze 
would indicate that a stress ary applied normal to the 
craze plane would induce very little strain e~ or e~z within 
the craze plane, and a realistic assumption might be that 
the effective Poisson's ratio f=0 .  Also, comparative 
measurements of the transverse strain in the central 
region of the craze and in the bulk polymer under 
conditions of uniaxial loading normal to the craze plane 
should provide the ratio of/~ to the Young's modulus of 
the bulk polymer. Results presented by Kambour 2 in- 
dicate this ratio to be somewhere between 1/3 to 1/4 for 
some typical polymer materials. Determination of the 
remaining three elastic constants E, v, and p will require 
additional information and probably additional assum- 
ptions about the nature of the craze material itself. It 
would appear quite probable that E < E  but such an 
assumption would need experimental verification. 

It is possible that all the mechanical effects in the bulk 
polymer exhibit their maximum values at the same point 
on the craze boundary and that the elastic constants of the 
craze satisfy the two additional conditions defined in 
equation (26). If this is true, the five independent elastic 
constants of the craze region are reduced to three which 
could be taken, for example, as (E,/~, ~) or (E, v, q). The 
reduction of the elastic constants from five to three 
implied by equation (26) does not result in any of the three 
constant cubic crystal classes as originally developed by 
Voigt t9 and discussed by Love 2°. Assuming the craze 
region to be completely isotropic further reduces the 
elastic constants to two. Experimental verification of 
these reductions does not appear to be available. Because 
of lack of information about these elastic constants, we 
assume in the numerical example of the next section that 
the craze region is isotropic and thus characterized by two 
independent elastic constants. 

E ( E -  f2/~) fE/~ 
g =  b =  

(1 + v)[(1 - v)E - 2~72/~] ' [(1 - v)E - 2v2/~] 

(1 - v)EE E 
8 = [(1 - v )E-  2~72/~] ' fi - 2(1 +v~ (34) 

We note that the shear modulus # is independent of the 
other defined elastic constants. To insure positive definite- 
ness of the strain energy function for the craze material, 
Eubanks and Sternberg ts have shown that the following 

inequalities must be satisfied: 

g>0,  8>0 ,  #>0 ,  ~>0 ,  

( g 8  - -  b 2 - 8/~) > 0 ,  

or equivalently 
E>0 ,  /~>0, #>0 ,  ~ > 0 ,  

(35a) 

- l < v < l ,  1 - v > 2 / ~  2 . -  (35b) 
E 

The nature of crazed regions in polymers makes it 
unlikely that these material constants can be obtained by 

NUMERICAL EXAMPLE 

We now consider a specific example of the previous 
analysis and show how the stress field varies around the 
tip of the craze. Because of uncertainties about the values 
of the five elastic constants associated with the trans- 
versely isotropic craze material we assume for this 
example that the craze is isotropic and its mechanical 
properties characterized by two elastic constants which 
are taken as the shear modulus G2 and Poisson's ratio v 2 . 
Major interest here is on the nature of the stress field in the 
isotropic bulk polymer in a neighbourhood of the craze 
tip, and while the assumption of isotropy of the craze may 
effect these numerical results quantitatively by providing 
different values for the constants Mx..., Nx..., the qualit- 
ative results should be retained. Also, taking Poisson's 
ratio v2 = 0 effectively uncouples transverse strains from 
axial stresses which appears to be a characteristic of the 
craze. For the isotropic craze the elastic constants reduce 
to 

g = 8 =  2(1-v2)G 2 b =  2v2G~2 

(1-2v2) ' (1-2v2) 
(36) 

/ t = f i = G  2 
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which also satisfy the conditions of equation (26). For  this 
example we will take 

G1/G2=4, vl =0.348, v 2 : 0  (37) 

which gives a ratio of Young's modulus for the craze to the 
bulk polymer of about 1/5. The constants of equation (21) 
become 

Mx= -0 .375 N== 1.674 

My = 2.50 Ny = 0.174 

Mxy = 4.60 N~y = 9.20. (38) 

For  this example the uniform stress field at infinity will 
be taken as a uniaxial stress of magnitude ao with 
direction 7 measured clockwise from the y-axis. This 
results in the uniform stress condition 

for the same case where the externally applied stress is 
directed normal to the craze plane, y = 0. The maximum 
value of z also occurs at r =  r0, 0 = 0 and a shear stress 
enhancement of z/zoo = 6.17 occurs at this point. Within 
the craze, (Z/Zoo)cr~ = 1.08. The enhancement of S and T for 
this situation are almost identical. The shear stress 
enhancement of Figure 4 is considerably more localized 
than the hydrostatic stress enhancement of Figure 3 and it 
is not clear that the effect of the shear stress is to propagate 
the craze along the x-axis. Other  possible effects could be 
the generation of shear bands skewed at some angle from 
the x-axis which have been observed experimentally by 
Newman and Wolock 21, or bifurcation of the craze plane 
which has apparently not been observed. 

Figures 5 and 6 show contour lines of hydrostatic stress 
S and maximum shear stress z when the applied uniaxial 
stress a o has direction ~ = 45 ° and we observe that these 
contour lines are considerably skewed from those of the 

axo = a o sin2~ 

O'y 0 = (7 0 COS2~ 

~0 = ao sin ? cos 7 (39) 

Using equations (38) and (39) in equations (22) and (23) 
gives the stress field in the bulk polymer in a neigh- 
bourhood of the craze tip under conditions of plane strain. 
Figure 3 shows the contour lines of constant hydrostatic 
stress S defined by 

S_11~(1 )  (1) (1) _ 1  (1) (1) -~v- ,x , :  + ayy + a== ) -  3(1 + vl)(axx + %y ) (40) 

for 7 =0,  that is, for the applied stress directed normal to 
the plane of the craze. The maximum value occurs at the 
craze tip r = ro, 0 = 0 and provides a stress enhancement of 
S/Soo = 6 at this point. The uniform hydrostatic stress field 
within the craze as obtained from equation (27) is 
(S/S~)c~, = 0.68. The effect of this stress field S would be 
to propagate the craze along the x-axis, 0 =0,  which is 
consistent with numerous observations indicating that 
craze growth occurs in a direction perpendicular to the 
direction of applied stress. Figure 4 shows the contour 
lines of constant maximum shear stress z defined by 

Z 
_ 1 r i ~ ( 1 )  ~(1)~2 1 A~(l)2-11/2 
--2LtVyy - - U x x l  T"rUxy / 

_ l f l ~ (1 )_ t r ( 1 )_ l . .  • (1) ( t )_o . (1 )  ,~ia(1)-1"11/2 (41) - 2 ~ w .  - xx  - 21o-,,y ) ( a .  ,,,, - . vxy  . j  

C~z~ " ~  

0 10 20 30  

,/,o 

1.1 .4 1.5 ~ "~/;co 

0 10 20 30 
r lr  0 

Figure 4 Contour lines of constant maximum shear stress, r/too, 
at craze tip for a uniaxial load directed normal to the craze plane, 
7=0 ° 

.5- I , X  

Figure 3 Contour lines of constant hydrostatic stress, S/Soo, at 
craze tip for a uniaxial load directed normal to the craze plane, 7 
=0 o 

Figure 5 Contour lines of constant hydrostatic stress, S/Soo, at 
craze tip for a uniaxial load directed 45 ° from the craze plane 
normal, ~,=45 ° 

5 0  P O L Y M E R ,  1 9 8 4 ,  V o l  25 ,  J a n u a r y  
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previous example. The maximum enhancement of S and z 
occurs at the craze boundary at an angle 0 = - 65 ° and the 
enhancements at this point are S/S~=4.59 and 
z/zo0 = 5.16. For  this condition, the shear stress enhance- 
mer/t is 12~o greater than the hydrostatic stress enhance- 
ment although both are less than the enhancement of the 
previous example where the applied stress was directed 
normal to the craze plane. It  would appear  that the effect 
of this stress field around the craze tip would be to deflect 
the growth of the craze toward a direction more closely 
perpendicular to the direction of applied stress. This effect 
of curving craze growth has been observed experimentally 
in polystyrene films by King and Kramer  22 under loading 
conditions of varying biaxial stress. The uniform stress 
field in the craze provides the values (S/S=)=0.49 and 
(Z /Zoo)e  . . . .  = 1.10 so the shear effect for this direction of 
loading is quite evident in the crazed region. The rigid 
body rotation of the craze is f~ = - 0.75 tro/G 1 which tends 
toward lining up the craze perpendicular to the direction 
of applied stress. 

Figures 7 and 8 show conour lines of constant S and z 
for the case where the uniaxial stress tr o is applied in a 
direction parallel to the craze plane, 7 = 9 0  ° . For this 
direction of applied stress, the effect of the craze is to 
decrease the stress at the craze tip and effectively 
suppress craze growth at this point, a much observed 
physical effect in crazed polymers. At the craze tip r = r o, 
0=0 ,  the hydrostatic stress is S/Soo =0.24, and the shear 
stress is z/z~; =0.  A line of zero shear stress extends out 
from the craze tip about one craze tip radius. The 
uniform stress field in the craze region has values 
(S/S~) . . . .  =0.12 and (z/Zoo) . . . .  =0.16. 

Figure 9 shows how the two stress combinations S/Soo 
and z/zoo in the bulk polymer vary around the craze 
boundary for the three directions of externally applied 
uniaxial stress just considered. Table 1 provides a listing of 
the maximum enhancement of several variables which 

0 0.56 10 20 30 

r / r  o 

Figure 7 Contour  l ines of constant  hydrostat ic stress, S/Soo, at 
craze t ip for a uniaxial  load directed parallel to the craze plane, 7 
=90  ° 

. ~ ~ 0 ~ 7 5 0 . 8  

0 10 20 30 

.~/c c 

Figure 8 Contour  lines of constant  max imum shear stress, T/zoo, 
at craze t ip for a uniaxial  load directed parallel to the craze plane, 
7 = 9 0  ° 

Craze '~'~G 

Figure 6 Contour  l ines of constant  max imum shear stress, Z/T~o, 
at craze t ip for a uniaxial  load directed 45 ° f rom the craze plane 
normal,  7 = 4 5  ° 
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6 .0  

E 
U 
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t -  
C 

b3 

~ 2.o 
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- 2 . 0  

' ' '  1 ' '  'l "E/Zco 
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Figure 9 Variat ion of stresses SlSoo and ~/z~o around the craze 
boundary  for 7=0  ° , 45 ° , 90 ° 
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Table I M a x i m u m  stress and strain enhancements  at  craze t ip  

3' 0 o 

(Oxx + Oyy) Oma x ema x 

Go r/r** oo e~nax 

0 ° 0 6 .00  6 .17  6 .08  6 .13  
10 ° - 1 8 . 0  ° 5 .95 6 .16  6 .06  6.11 
20  ° - 3 4 . 3  ° 5 .78  6 .10  5 .94  6 .02  
30  ° - 4 8 . 2  ° 5 .45  5 .89  5 .67  5 .79  
40  ° - 5 9 . 9  ° 4 .93  5 .46  5 .20  5 .34  
45  ° - 6 5 . 2  ° 4 .60  5 .16  4 .88  5.03 
50  ° - 7 0 . 2  ° 4 .22  4 .79  4 . 5 0  4 .66  
60 ° - 8 0 . 2  ° 3 .36  3 .89  3 .62  3 .77  
70 ° - 9 1 . 5  ° 2 .44  2 .83  2 .64  2 .74  
80  ° - 1 1 0 . 1  ° 1.55 1.73 1.64 1.69 
90  ° _+ 180 ° 1 .00 1.00 1.00 1.00 

may influence the growth of crazes in polymers and shows 
the effect of the direction of applied uniaxial stress y on 
these variables. These all maximize at the same point on 
the craze boundary as defined by the angle 0 o. For  this 
example there is not much difference in enhancement for 
any of these variables for a given direction of applied 
stress. 

These results show that the induced stresses and strains 
in the bulk polymer around the tip of the craze become 
skewed with the angle y such that the craze growth tends 
toward a direction normal to the direction of applied 
stress. This is consistent with the observations of Klem- 
perer 2a who first noted that the areal growth of crazes 
occurs in planes normal to the direction of maximum 
tensile stress in isotropic polymers, and with the recent 
results of King and Kramer z2 who show how a growing 
craze turns to follow the direction of maximum tensile 
strain in biaxially loaded specimens of polystyrene. For  a 
uniaxial stress having direction parallel to the craze plane 
(~, = 90°), the stresses and strains in the bulk polymer at the 
craze tip become very small, the maximum values then 
occurring near the middle of the craze with no enhance- 
ment. Thus loading parallel to the craze plane has no 
tendency to propagate the craze, an effect also observed 
by King and Kramer 22. 

Since the stress and strain enhancements at the craze tip 
are independent of the geometry of the craze for thin 
crazes, and in particular this enhancement is independent 
of craze length, these results indicate that craze growth 
will also be independent of craze length. A constant rate of 
craze growth over relatively large ranges of craze size has 
been experimentally observed in polystyrene at room 
temperature by Sauer and Hsiao 24. 

DISCUSSION 

In this analysis of the stress and displacement fields 
around a craze tip, the bulk polymer has been modelled as 
a linear isotropic elastic continuum and the craze has been 
modelled as a transversely isotropic elastic inclusion of 
very thin elliptical shape. While the elastic constants of the 
bulk polymer and craze are understood to be temperature 
dependent, this is not explicitly represented and all 
mechanical processes are assumed to occur at constant 
temperature. Viscoelastic, plastic, and rate effects are not 
considered. For  uniform stress conditions applied in the 
far field, the craze region is in a state of uniform stress. 
Stresses in the bulk polymer exhibit their maximum 
values at the craze interface, and these maximum values 
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depend only on the material properties of the craze and 
bulk polymer and on the externally applied loads. In 
particular, the stress enhancement at the craze boundary 
is independent of the craze geometry, that is, it is 
independent of craze length, craze thickness, radius of 
curvature of the craze tip or any other geometrical 
parameter associated with the craze. This implies that 
craze growth rate will be constant for any constant 
loading which is sufficient to initiate craze growth. Sauer 
and Hsiao 24 found this to be true for polystyrene at room 
temperature for craze growth beyond some initial length 
where they observed that the growth rate at constant load 
remained unchanged over large increases in craze size. 
Eventually, however, the effects of boundaries of a finite 
specimen will alter the stress field and craze growth rates 
can be expected to change as the craze approaches a 
boundary of the bulk polymer. Observations of very slow 
craze growth under conditions of low-stress creep z5 
indicate a craze growth rate that slows significantly with 
time. This effect may be due to long time viscoelastic 
relaxation or hardening within the craze or bulk polymer. 

This analysis precicts that the shape of the craze at the 
tip will be blunted rather than cusped as required by 
analysis which model the craze as a crack. While blunting 
is consistent with some observations of craze tip profiles 2, 
other observations, particularly for crazes growing at tips 
of cracks, indicate a cusp shape. The presence of a long 
crack within the craze may substantially alter the stress 
and displacement fields at the craze tip. The opening crack 
will tend to spread the craze apart which may give the 
appearance of a cusp while remaining blunted on a 
smaller scale at the craze tip. The possible effects of a crack 
within the craze on the stress field around the craze tip is 
not considered in this analysis. 

A second interesting result of this stress enhancement 
independence on craze length relates to the establishment 
of a criterion for craze growth. Since the stress and strain 
enhancement for a given polymer-craze system depends 
only on the externally applied loads, craze growth criteria 
based on these applied loads and not on conditions 
existing at the craze tip would appear to be completely 
justified. Also, the fact that it is quite possible that all of 
the mechanical effects generally considered as candidates 
for inducing craze growth maximize at the same point on 
the craze boundary and with roughly the same enhance- 
ment may effectively mask the actual physical conditions 
required for craze growth. Based on these results, it comes 
as no surprise that a definitive criterion for craze growth 
in glassy polymers has yet to be established. But this may 
only represent a limitation of the elastic analysis; the 
highly localized stress and strain enhancements at the 
craze tip may be of considerably more importance under 
conditions where viscoelastic, plastic, or other dissipative 
effects are operating in the bulk polymer. 
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